Examples of Equations

The Sample Mean
X-bar (
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) is the mean value of the sample measurements, 
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 is the number of sample measurements taken, and 
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 is the value of the ith sample measurement:
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The Sample Variance
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 is the number of sample measurements taken, 
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 is the value of the ith sample measurement and X-bar (
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) is the mean value of the 
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 sample measurements taken:
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The Sample Standard Deviation
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 is the number of sample measurements taken, 
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 is the value of the ith sample measurement and X-bar (
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) is the mean value of the 
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 sample measurements taken:
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The Standard Error of the Sample Mean
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 is the sample standard deviation of the sample measurements, 
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 is the number of sample measurements taken:



[image: image17.wmf]N

SE

d

=


(4)

The One-Sample t Test
The one sample t test is derived from the difference of the sample mean (
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) from the population mean (
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) divided by the standard error of the sample mean:
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The Two-Sample t Test
The two sample t test is derived from the difference of one sample mean (
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) from another sample mean (
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) divided by the respective standard error of each sample mean:
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Polynomials
... It follows from this that if 
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 is any basis of 
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 then any quasi-symmetric function 
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 has an expansion of the form:
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with the 
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 polynomials in their arguments. The Bergeron-Reutenauer conjecture asserts that ...
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